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Let ~b(x), x e  R 2, be a random field, which may be viewed as the potential of an 
incompressible flow for which the trajectories follow the level lines of r Percola- 
tion methods are used to analyze the sizes of the connected components of level 
sets { x: ~,(x) = h } and sets { x: ~,(x) ~< h } in several classes of random fields with 
lattice symmetry. In typical cases there is a sharp transition at a critical value 
of h from exponential boundedness for such components to the existence of an 
unbounded component. In some examples, however, there is a nondegenerate 
interval of values of h where components are bounded but not exponentially so, 
and in other cases each level set may be a single infinite line which visits every 
region of the lattice. 

KEY WORDS: Lagrangian trajectory; incompressible flow;, turbulent diffu- 
sion; percolation; statistical topography; minimal spanning tree; random field; 
shot noise. 

1. I N T R O D U C T I O N  

Let  V(x ,  co), x ~  •d, be  a h o m o g e n e o u s  e r god i c  i n c o m p r e s s i b l e  f low in 

d i m e n s i o n  d>~2.  L a g r a n g i a n  t r a j ec to r i e s  a re  the  t r a j ec to r i e s  o f  pass ive  

pa r t i c les  i m b e d d e d  in t he  flow, t h a t  is, s o l u t i o n s  of  the  O D E  

:~, = V ( x , ,  co) (1.1) 

H e r e  co c a n  be  c o n s i d e r e d  a n  i ndex  in the  e n s e m b l e  12 o f  all  r e a l i z a t i o n s  of  

the  r a n d o m  f low V; the  p r o b a b i l i t y  space  (g2, i f ,  P )  h a s  p r o b a b i l i t y  

m e a s u r e  P i n v a r i a n t  a n d  e r god i c  w i t h  respec t  to  t r a n s l a t i o n s  o f  R d. T h e  
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problem of the qualitative structure of the solutions of (1.1) is of great 
physical importance, because the transport properties of the flow, such as 
heat propagation, depend on this structure. Time-independent random 
flows are especially important in plasma physics, where velocity fields are 
usually generated by magnetic fields which are themselves fixed over time, 
or changing only very slowly. 

The physics literature on this subject is extensive (see refs. 1-7 and the 
references therein; ref. 2 is a review), but the analysis is generally based on 
numerical simulations and physical intuition. Refs. 8 and 9 are among the 
few mathematically rigorous studies of the problem. 

The central working physical hypothesis about Lagrangian trajec- 
tories-sometimes called the Sagdeev hypothesis, after the Russian astro- 
physicist R. Sagdeev--can be formulated as follows: for d = 2 ,  if the 
mean ( V )  = 0, then in "typical situations" the Lagrangian trajectory con- 
taining a given point Xo is a bounded loop P-a.s., and moreover, the size 
of this loop has finite moments of all orders, even perhaps an exponential 
moment. Transport of passive particles is then impossible. If the model 
incorporates a nonzero molecular diffusivity, i.e., a small diffusion term is 
added to (1.1), nontrivial transport will occur; in some rescaled limit there 
is turbulent diffusion. For d >t 3, with again ( V )  = 0, in typical cases there 
is coexistence of two different types of Lagrangian trajectories: closed 
loops, which correspond to islands of stability for the system (1.1), and 
unbounded trajectories, which underlie the transport of passive particles for 
arbitrarily small molecular diffusivities. Thus the problem of describing 
Lagrangian trajectories is closely related to questions about turbulent 
diffusion. 

In this paper we will consider some two-dimensional models which are 
hybrids of lattice and continuum models, where it is possible to get fairly 
complete information about the structure of the Lagrangian trajectories, 
using results and ideas from percolation theory. Related models were 
studied in refs. 1, 4, and 7. Besides proving results about these models, our 
goal is to formulate some new mathematical problems in the area. 

2. R A N D O M  FIELDS WITH LATTICE S Y M M E T R Y  

For d=2 an arbitrary incompressible vector field V(x,~o) with 
( V )  = 0 can be represented as the curl of a homogeneous scalar potential 
~(x), i.e., 

v = ( - a ~ , l a x ~ ,  a~ , lax ,  ) 
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This means that each Lagrangian trajectory is an appropriately 
parametr ized level line of  ~, at least provided there are no critical points 
of ff (where Vr = 0 )  on the level line. Let 

st, = {x: ~,(x)=h} 
S~,, = {x: ~(x)~< h} 

and 

~ c r  = { h E R: Sh contains a critical point of r } 

If ~b ~ C 1, then by Sard's Theorem,  the set o,~, has Lebesgue measure 0. If  
Xo ~ Sh and h r ~ , ,  then the Lagrangian trajectory starting at x o will be 
periodic if and only if it is closed. 

It is c o m m o n  to think of ~k as the elevation of a landscape and h as 
a level to which this landscape has been filled with water. Then S~h 
consists of  lakes and/or  an infinite ocean, and its complement  consists of 
islands and/or  an infinite land mass. The usual assumption in the physics 
literature (see, e.g., ref. 2) is that, for "typical" r andom fields (stationary, 
ergodic, rapidly decaying correlations, etc.) there is a sharp transition at 
some critical value of h from a land mass with lakes to an ocean with 
islands. 

One reasonably physically realistic type of potential  is shot noise, that 
is, a r andom field of the form 

ql(x) = ~ A,qo(Ix- x,I) 
i 

where {Ai, i/> 1} are i.i.d, r andom variables with ( I A A )  < c ~ ,  
X =  {x~: i~> 1 } is the set of sites of  a lattice, a Poisson process, or some 
other locally finite s tat ionary point  process, and r R z--* R satisfies 

y ~(Ix l )dx<oo 
2 

Analysis of  the level lines for such potentials is in general a complex 
problem, even if ~0 and/or  the correlation 

B(x) = ( i f (0)  ~b(x)) -- ( r  ( i f ( x ) )  

decrease rapidly with increasing Ixl. In the Gaussian case it is known ~91 
that for some h o, for Ih[ > ho the level set Sh has only bounded connected 
components ,  and the lengths of these components  have an exponential  

822/77/3-4-8 
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moment .  Let us say that  a subset of  R2 percolates if it has an unbounded 
connected component ;  the corresponding percolation problem for ]hi < ho 
is not solved. 

Nonetheless, by taking the set X of sites to be a lattice, we can 
consider a class of  cont inuous models with lattice symmetry,  to which 
results on two-dimensional  lattice percolation can be applied; see ref. l0 
or I I  for the necessary background on lattice percolation. Other  lattice- 
symmetric models, not only of shot noise form, have been considered in 
refs. l, 3, 4, and 7. 

Let 0_ be one of three s tandard two-dimensional  lattices: the square 
lattice 77 2, the tr iangular lattice T 2, and the hexagonal  lattice H E, each 
with nearest-neighbor bonds of length 1. The lattice iL divides the plane 
into faces which are either squares, triangles, or hexagons with sides of  
unit length. Let D denote the closed unit disk in ~2 and suppose q~: 
[0, ~ ) ~  [0, l ]  is a smooth  function strictly decreasing on its support  
[0, 1 / 2 + e ] ,  with 0 < e <  1/2 chosen small enough so that  the translates 
x +  (1/2 + e )D,  x e n_, intersect only pairwise. Suppose also that q~(0)= l 
and that  q~ is strictly convex on [ 1 / 2 - e ,  1/2 + e]. The latter ensures that  
if b is a bond of n_ with endpoints  x and y, then 

inf (~o(lw- xl) + ~o(Iw- yl))= inf (~o(t) + q~(1-t))= 2q~(l/2) 
w ~ b  t~EO, l] 

or more generally that  for arbi t rary positive constants  c~ and c2, 

inf (clq~(lw-xl)+c2~o([w- yl))= inf (Cl~O(t)+CE~O(1--t)) 
web te[0,1] 

is uniquely achieved at w = to y + (1 - to) x for some t o = to(C~, c2, q~) 
[ 1 / E - e ,  1/2 + e ] .  

Let H denote the set of  points in R 2 for which 0 is the closest site in 
0_: H =  [ - 1 / 2 ,  1/2] 2 if 0_=~ '2, H is a hexagon centered at 0 if L = T  2, and 
H is a triangle centered at 0 if D_ = H 2. Let U be a r andom variable uniform 
over H, let X={xi,  i>~l} be the set of  sites of  the lattice L, and let 
{ A ,  i>~ l} be i.i.d, symmetric  r andom variables. Our  r andom potential  is 
then 

q,(x) = ~  ,4,~o(Ix- x , -  UI) 
i 

It is clear that  ~, is invariant and ergodic with respect to translations of  R 2. 
Further,  

B(x)=O for [ x [ > l + 2 e  
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Of course due to the lattice structure the tail a-field of  ~b is not trivial. Let 
F denote the connected component  of  the level set S ,  to~ which contains the 
origin, and 

R = sup{ Ixl: x E r }  

Model  1. We first consider the tr iangular lattice and A i =  _1 with 
probabil i ty 1/2 each. Here we observe a sort of  critical interval of levels, 
- h r  < h < her, where components  of the level sets Sh and regions S~h are 
bounded but not with an exponential  moment .  Thus, in contrast  with the 
usual assumption made in the physics literature, there is no sharp tran- 
sition at some critical value of h from an unbounded land mass with 
exponentially bounded lakes to an unbounded ocean with exponentially 
bounded islands. No  level lines percolate. 

Theorem 2.1.  For  the lattice 0_ =-II .2 and A i =  +1 with probabil i ty 
1/2 each, and for her--2~0(1/2), 

(a) S~<h percolates if and only if h >/her 

(b) Sh percolates for no h 

(c) for some positive constants  c 3 and ~, P(R>t)>~c3t -~' 

(d) for 1hi >her ,  the connected components  of Sh have diameter  
bounded by l + 2e 

(e) for all Ih[ <her ,  for some positive constants c4=c4(h) and a, 

P(R> t l~(O) =h) >i cat-~ 

The proof  will require the following result. 

L e m m a  2.2. Let p,>~O and rn=~k~ k. Suppose that for some 
positive constants  a~, a2, ct, and fl, 

aln-P<~r,,<~a2 n-~ for all n~> 1 

Let y > 0 and fi = fl(), + ~)/ct; then there exists a3 > 0 such that  

~ k-Ypk>~a3 n-~ for all n~>l 
k = n  

Proof. Choose c so that  2a2c-~'<al. I f k ~ c n  ply, then 

r k .<<. a2k-~ <~ a2c-~n -p <~ rn/2 
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Hence from summat ion  by parts,  

k_).pk = n-)'r, ,_ 
k = n  

=i 
k = n +  1 

~> (r,,/2) 

r k [ ( k - -  1 ) - ~ ' - k  - r ]  
k = ~'~ + 1 

( r , - - rk ) [ (k - -  1)-~'--  k - r  ] 

~" [(k- 1)-~'-k-~'] 
k >~ cn# I~ 

>~ (r,,/2)(cn ply) -~' 

>1 a311 -'~ �9 

In an abuse of terminology,  when confusion is unlikely, we will 
identify a planar  graph with the set of  its bonds, and identify a bond with 
the line segment in •2 connecting its endpoints. 

Proof of  Theorem 2. 1. We need some facts about  site percolation on 
-B -2 with sites independently occupied with probabil i ty p. At the critical 
probabil i ty Pc = 1/2, neither occupied nor vacant  sites percola te / ' z l  There- 
fore every site is surrounded by a sequence of disjoint circuits Ci, i>~ 1, 
with all sites in Ci occupied if i is even, and all sites vacant  if i is odd. In 
the present model we can designate a site x~ as a plus, or occupied, site if 
At = 1, and a minus, or vacant,  site if A t =  - 1 .  The circuits C~ can then be 
labeled phts and minus circuits. 

I fh  < her then S<.h cannot  cross any plus circuit, so does not percolate. 
If h ~>hcr, then each component  of  the complement  of S<.h is contained in 
the support  of  a single function ~ o ( I - - x ~ - U I ) ,  i.e., S<.h crosses every 
bond, so it is clear that S~h percolates, and (a) is proved. Statement (d) 
is proved similarly. Statement (b) follows from the fact that  no level line 
can cross both  plus and minus circuits. 

Fix h, 0 <  Ihl <her;  let 

Bi= { x ~ R2: J x -  xil ~ 1/2 +e}  

and set 

V =  { x e  1I~2: xeB~ for exactly one i} 

For  x e  R z let X(x) be a site x~ which minimizes I x - x , I .  Since the regions 
B~ intersect only pairwise, if x~ is a plus site, then (Sh -- U) n V n  B~ consists 
of six equal nonempty  arcs of  a circle, which we call basic arcs of Sh-- U, 
and 

p v ( h ) = P ( - U ~  VIVa(0) = h )  > 0  

Here Sh--  U denotes the translate of  the set Sh by - U. 
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One can place a bond between every nearest-neighbor pair of sites 
which have the same sign; the resulting connected components  are called 
pills clusters and minus clusters. The outer boundary of a cluster C is 

OC= {x E C: x is connected to infinity by a lattice path outside C\{x} } 

Let IFI denote the number  of  sites in a set F. If xi is a site in C\OC, then 
the hexagon {x: X(x)= x~} of area x / ~  is entirely inside the contour  0C; 
it follows that 

lOCI = length of OC 

>/2 x/rn. (area enclosed by OC)1/2 

/> c5( ICI - 10CI )1/2 

for some constant  c5, which implies 

lOCI >1 c6 ICI t/2 (2.1) 

Let C O denote the cluster of 0 [necessarily a plus cluster if ~ ( 0 ) > 0  and a 
minus cluster if r  Now Sh includes a loop Yo which encloses C 0, 
and hence encloses area at least c7 ICol, for some c7 = c 7 ( h ) .  Therefore the 
length o f y  o is at least c8 ICol t/2. If - U e y o ,  then F = y  o, so R>~c8 [Col 1/2. 
If 0 = xi ~ OCo, then at least two of the six basic arcs in Bi are part  of  Yo. 
It follows that 

P(R >1 can 1 / 2 1 1 / / ( 0 )  = h) >~ P( - U~ Yo, I Col/> n I~(0) = h) 

>~e( -U~ V,O~OCo, ICol :>n Iff(0) = h)/3 

- - e ( 0 ~ 0 C 0 ,  ICol >~n) pv(h)/3 

>1 ~pl.,(h) ~ c6k-l/2p([Co[ = k )  (2.2) 
k = l !  

The equality in (2.2) follows from the fact that knowing - U ~  V and 
~b(0) = h does not condition the sign (plus or  minus) of  any site other than 
X ( -  U). The last inequality follows from (2.1). 

Now for some constants  a l, a2, and 0t > 0, 

a] n -i/2 ~< e(I  Col >1 n) <~ a,.n -~ 

(see ref. 10, Theorem 9.89; the proof  for site percolation on the triangular 
lattice is similar.) Hence for 0 < Ihl < her, (e) follows from Lemma 2.2 and 
(2.2), and then (c) follows. 
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It remains to prove (e) for h = 0 .  Let {Ji, i~> 1} be a listing of the 
faces, and K,.= J~\l,)j Bj. For any bond b separating two adjacent faces J~ 
and J , ,  the dual bond b* is the perpendicular bisector of b with endpoints 
at the centers of J~ and Jk. Let S denote the union of all bonds b* dual to 
bonds b for which the endpoints of b are of opposite sign. Then 

So =SU U Ki (2.3) 
i ~ l  

Given ~b(0)= 0, we thus have - U e  {,-)i Ki a.s., so we can define K to be the 
region Ki which contains - U .  If 0 e OCo and K is connected to infinity 
outside Co, then F contains a curve surrounding Co. At least two of the six 
triangular faces J~ with 0 as one vertex are connected to infinity outside Co, 
so for some constant c9, 

P(R ~> t[ ~k(0) = 0)/> P(diam(Co) >t t, 0 ~ c3Co I ~(0) = 0)/3 

>/e(ICol/> C9 t2, 0~0Co)/3 

and (e) follows as for 0 < Ihl < her. �9 

Model  2. We consider the square or hexagonal lattice and A,.= +1 
with probability 1/2 each. In contrast to model 1, here there is no critical 
interval, but rather a single critical level of 0, which is the only level which 
percolates. All other level lines are exponentially bounded. 

Theorem 2.3. For the lattice Q_=7/2 or H 2 and A~= _1 with 
probability 1/2 each, 

(a) S~h percolates if and only if h >~ 0 

(b) Sh percolates only for h = 0 

(c) for Ihl >2r the connected components of Sh have diameter 
bounded by 1 + 2e 

(d) for some constants c ,  for all h r  P(R>tlqJ(O)=h)<~ 
Clo exp( -C l l  t) 

This model thus has the main properties considered "generic" in the 
physics literature: bounded Sh for all h except the critical level h = 0, with 
an exponential moment for h 4: 0. 

Proof of Theorem 2.3. We continue with the terminology of the 
proof of Theorem 2.1. Any pair of sites from the boundary of a single face 
(or the line segment connecting these two sites) is called a *-bond, and a 
*-circuit is a circuit composed of *-bonds. A circuit is a plus *-circuit or a 
minus *-circuit if all sites on it have the corresponding sign. A *-path is a 
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path consisting of *-bonds, and we say there is *-percolation of plus (or 
minus) sites if there is an infinite *-path on which all sites are plus (or 
minus) sites. A site with a given sign is part  of  a finite cluster if and only 
if it is surrounded by a *-circuit of opposite sign. 

The term circuit or cluster, without the *, still refers to connection via 
nearest-neighbor bonds. 

For  nearest-neighbor site percolation on 7/2 or H E, we have 1~l'13) 

Pc > 1/2 (2.4) 

so at density 1/2, neither plus nor  minus sites percolate. Therefore every 
site is surrounded by a disjoint sequence of *-circuits Ci, i >/1, with all sites 
in Ci plus sites if i is even, and all sites minus if i is odd. Given a plus 
*-circuit, there is a curve passing through the same sites and faces as the 
plus *-circuit; in the same order,  such that ~b(x) >~ 0 at every x in the curve; 
one merely moves the plus *-circuit slightly so it does not pass through Bj 
for any minus site xj. This curve cannot  be crossed by S<h for h < 0, so $1, 
and S<_h do not percolate for h < 0. The same proof  applies to Sh for h > 0, 
so to prove (a) and (b) it remains to show So percolates. 

It follows from (2.3) that  every bounded componen t  of So is sur- 
rounded by either a plus circuit or a minus circuit, as this is the only kind 
of circuit that  is not crossed by So. F rom ref. 12, or ref. 11, Corollary 3.1, 
we have that  the critical probabil i ty p*  for *-percolation satisfies 

p*  = 1 - P c  

Therefore by (2.4), *-percolation of minus sites occurs at density 1/2, so 
there can be only finitely many  plus circuits surrounding the origin. 
Similarly, only finitely many  minus circuits surround the origin, so So must 
have an unbounded component ,  i.e., So percolates. This completes the 
proof  of  (a) and (b). 

If ~k(0)=h ~ 0 ,  then F is contained in U~:x,~c0 B~, so 

P( R > t I ~b (0) = h ) ~< P( radius( Co ) > t - 2 ) 

Since 1/2 < Pc, the latter decays exponentially 1~4-'6~ in t, which proves (d). 
Statement (c) is obvious. �9 

Model  3. We consider the tr iangular lattice with general symmetric 
Ai. Here a critical interval as in model 1 exists if and only if 0 r  

T h e o r e m  2.4.  For  the lattice IL = T 2, Ai symmetric, h 0 = infsup(lA,I), 
and hc~ = 2ho = q~(1/2), 



636 Alexander and Molchanov 

(a) i f h o > 0  and P(Ai=ho)=O, then 

(i) S<~h percolates if and only if h > her 

(ii) Sj, percolates for no h 

(b) i f h o = 0  and P(Ai=O)=O, then 

(i) S~h percolates if and only if h > 0 

(ii) Sh percolates for no h 

(iii) for some constants ci, for all hv~O, P(R>tl~(O)=h)<~ 
c,z exp(--c]3t) 

(iv) for some constants c,4 and ct, P(R>tl~,(O)=O)>~c~4t -~ 
(c) i f h o > 0  and P(Ai=ho)>O, then 

(i) S</, percolates if and only if h ~> her 

(ii) S/, percolates for no h 

(d) i f h o = 0  and P ( A i = 0 ) > 0 ,  then 

(i) S<h percolates if and only if h >7 0 

(ii) Sh percolates only for h = 0 

Further, if ho > 0, then (c) and (e) of Theorem 2.1 are valid. 

The proof of Theorem 2.4 will require the following result. 

Lemma 2.5. For the nearest-neighbor graph G on the lattice -O -2, let 
be the set of bonds, and let p, e > 0. Suppose that each site is indepen- 

dently labeled plus with probability p, minus with probability l - p ,  and, 
independently, marked with probability e, unmarked with probability 1 - e .  
Let 

A = {b ~ M: at least one endpoint ofb is a minus site} 

B = {b ~ 9~: both endpoints ofb are marked sites} 

Z =  {x~TZ: x ~ 0  by a path of bonds bCA wB} 

W= {b*: b~A w B} 

Then for p = 1/2, W percolates, and for some constants c~ 

P(diam(Z) > n) ~< el4 e x p ( - c l s n )  (2.5) 

Note the conclusion that W percolates is false for e = 0, for then W 
cannot cross any plus circuit, and every site is surrounded by a plus circuit 
a.s. One may think of an adjacent pair of marked sites as creating a breach 
in a plus circuit where W can cross it. Percolation of W says that any 
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positive e is enough to create such breaches. Since Pc = 1/2, this would be 
trivial if only a single marked site were needed for a breach, but the need 
for an adjacent pair complicates things. 

Proof  o f  l_emma 2.5. Let ~ = ( 1 , 0 ) ,  ~2=(1/2, x/3/2), so that the 
points zo.= i~ 1 +J~2, i, j e  Z, are the sites of the triangular lattice. We wish 
to compare site percolation on G with site percolation on a modified graph 
t~, constructed by adding a site Yu at the midpoint of the bond 
{zi./+ ], z~+ L j} for each i , j ~  77 with i even. The matching graph ~* is then 
obtained from t~ by adding a bond from z o- to Yu, a bond from y~ to 
Z~+l./+~, and a bond from z~.y+~ to z,.+L/, all for each i, j ~ 7/ with / even. 
(Note t~* is not planar.) We now declare a site to be vacant if either it is 
a plus site in Tz or it is a site Yu and both z;.j+] and z~+L/are marked. 
Otherwise the site is called occupied. Because the additional sites yu exist 
only for even i, the occupied/vacant properties for distinct sites are 
independent. 

By Theorem 1 of ref. 17, for fixed e > 0 the critical value p } ~ )  o fp  for 
percolation of occupied sites in t~ is strictly less than the critical value 1/2 
for G, so that also the critical value(lZ~pc((~* ) = 1 - p}(~) o fp  for occupied 
percolation in (~* is strictly greater than 1/2. Vacant sites percolate in (~ 
only when p > p } ( ~ * )  (ref. 10, Corollary 3.1). Thus for p =  1/2, occupied 
sites percolate in t~*, and (see Theorem 5.1 of ref. 11) the vacant cluster 
diameter in (~ has exponential tails, tj4'15'16) that is, (2.5) holds. 

Let Hv denote the hexagonal region bounded by {b*: b is a bond of 
G with z o. as one endpoint}. Let ~ be an infinite path in t~* in which all 
sites are occupied. It is easy to see that ~ can be chosen with the properties 
that 

any two sites in ~ which are adjacent in (~ are adjacent in ~ (2.6) 

and 

if yv is a site in ~, then the two adjacent sites of~ are -u and z~+ l,j+l (2.7) 

for if (2.7) fails, then y~ can be skipped over. Let y be the corresponding 
infinite path in R 2 obtained by replacing each bond of ~ with a line 
segment having the same endpoints. Then by (2.7), y is contained in 
{ b * : b ~ B }  u l ,  J~,j~.Hg. By (2.6) the latter set a.s. has an unbounded 
connected boundary, and that boundary is part of W. The percolation of 
W follows. �9 

Proof  o f  Theorem 2.4. We can express A; as e i IAil with e~= -I-1 
with probability 1/2 each, independent of IA}. We now call a site x, a plus 
site if e~= 1 and a minus site if e i= -1 .  As in the proof of Theorem 2.1, 
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every site is surrounded by a disjoint sequence of circuits C;, i >/1, with all 
sites in C; plus sites if i is even and all sites minus sites if i is odd. 

If h < her, then S~h cannot cross any plus circuit, so does not percolate. 
If P(Aj=ho)=O, then this applies to h=hcr as well. If h>h~r, let 
s = h/2~o(1/2 ), and call a site x i marked if tail ~< s. Of  course being marked 
is independent of being a plus or minus site. Note that S~h crosses all 
bonds b in the sets A and B of Lemma 2.5, i.e., S~h contains the set W of 
that lemma. Thus for h > hc~, S_<h percolates a.s. If  P(A/=ho)> 0, then this 
applies to h = h~r as well. This proves (i) of (a)-(d). 

If h 5 0 ,  then Sh cannot cross both plus and minus circuits. If  
P (A j=0 )  =0 ,  then this applies also to h = 0. This completes the proof of 
(ii) of (a)-(c). Suppose P(An = 0 ) >  0. One can place a bond between every 
nearest-neighbor pair of sites x,., xj for which both Ai ~< 0 and A/~< 0. Since 
the critical probability for ~-2 is 1/2, the resulting graph has a unique 
infinite cluster, which we denote C~' o. We can analogously define C~o, and 
let ), be an infinite self-avoiding lattice path in C~o. For each k we let 

D k : =  {xi~ Q_: x~,-* Xk by a lattice path entirely outside C~'o} 

Dk is the set of sites in the hole in C~o which contains xk, if Ak > 0. Then 
Dk is finite for all k, since C~' o includes a circuit around every site, a.s. Let 

ek:= U 
i: X i ~ D k  

Hk := {x ~ •2: there is no path from x to infinity in S< o w E~,} 

so D k c Hk. Note that if x ~ Ek\Hk, then x is near the outer boundary of 
Ek in the sense that xEB~c~Bj for some x ~ D k  and x/r  Further, H k 
is bounded and simply connected, ~ = 0 on OHk, and any two sets Hk and 
11,, either coincide or are disjoint. Therefore the boundary of the set 

is an unbounded connected subset of So, which completes the proof of 
(d)(ii). 

If  O ( 0 ) = h > 0 ,  then, for the Z of Lemma 2.5, F is contained in 
Ui:xiE z Bi, SO 

P(R > t l ~,(0) = h) ~< P(diam(Z) > t - 2) 

The case of t~(0) = h < 0 is similar. Thus (b)(iii) follows from Lemma 2.5. 
The proof of (b)(iv) is the same as the proof of Theorem 2.1(e) for 

h = 0 .  The proofs of statements (c) and (e) of Theorem 2.1 remain the 
same. �9 
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3. I N F I N I T E  S P A N N I N G  T R E E S  A N D  A S S O C I A T E D  
R A N D O M  F I E L D S  

For a finite set Xe  R 2, a (Euclidean) minimal spanning tree (MST) of 
X is a tree with site (i.e., vertex) set X and minimal total length of all bonds 
(i.e., edges.) More generally, given a finite graph G with site set Xand  bond 
set ~ ,  and a function f :  ~ ~ [0, ~ ) ,  an f-minimal spanning tree (f-MST) 
of X is a tree with site set X and ~,bE~f(b) minimal among all such trees. 

We will describe how a closely related infinite spanning tree T can be 
created for certain countably infinite sets X c  R 2 and functions f It will be 
shown to have the property that for each site there is a unique bond of T 
emanating from that site through which the site is connected to infinity in 
T. In other words, removing any one bond of T leaves one finite and one 
infinite component. For "nice" X, for h near 0, each level set Sh of the 
potential 

@(x) = d(x, T) 

then includes a single infinite line; this line traces around the tree, missing 
at most isolated pockets. Here d( . , - )  denotes Euclidean distance, and 
d(x, T) = inf{ d(x, y): y e T}. 

In this context, the most natural example is to take X to be the set of 
sites of a Poisson process, take G to be the complete graph or the 
Delaunay triangulation (see ref. 5) on X, and take f to be Euclidean 
distance. However, technicalities are reduced somewhat, without altering 
the basic argument, if we take X =  D_, one of the three standard two- 
dimensional lattices of Section 2, ~ the set of nearest-neighbor bonds, and 
{f(b), b e ~ }  i.i.d, random variables uniform in [0, l ] .  Since the theme of 
this paper is lattice-based examples, we will take the latter course. More 
general results (with more complicated proofs) covering both the Poisson/ 
Euclidean case and the lattice/i.i.d.-uniform case in all dimensions appear 
in ref. 18. Our techniques here are strongly two-dimensional. 

Given a graph G with site set X and bond set ~,  and given a finite 
.4 c X ,  x e A ,  f:  ~ [0, oo) and r > 0 ,  let GA denote the graph with site set 
A and bond set {b=  {x, y} eG: x, y e A } ,  and 

Y<r(x, A) = { y e A: x ~ y by a path in GA consisting only 
of bonds b with f(b) < r} 

and 
Y<r(x) = r<,(x, x)  

It is well known ('9) that for finite .4, if f is one-to-one, 

the f -MST of A is {b= {x, y} eGA: yr  Y<f(b)(x, A)} (3.1) 
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This motivates us to define the infinite f-MST 

7= {b= y} yr 

Let A,, T x and let T(n) denote t h e f - M S T  of An; from the above discussion, 
if m < n ,  b = {x, y} ~ [ - m ,  m ]  2, and b e  T(n), then b ~ T(m). This means 
that  there is a limiting set of  bonds - - t hose  which remain in T(n) as 
n --, ~ - - w h i c h  does not depend on { A,} and is precisely T. 

A nearly identical structure was investigated by Aldous and Steele 12~ 
for X the set of sites of  a s tat ionary point process and f(b) the Euclidean 
length Ibl, the difference being that  in their analog of T, bonds b = {x, y} 
with Y<tbl(X) and Y<lht(Y) disjoint and both infinite were excluded. 
However,  as they point out, for the Poisson process the two structures are 
a.s. the same; see ref. 18. 

Suppose f is one-to-one and the vertices of  G have finite degree. It is 
clear that  T is acyclic, because any cycle in G has a unique bond b maxi- 
mizing jr, which is necessarily not in T, by (3.1). Further,  T has no finite 
components ,  for the f -minimizing bond connecting such a component  to an 
outside vertex would necessarily be in T, again by (3.1). In particular,  there 
are no one-point  components ,  so T spans the vertex set. What  we need to 
prove are the facts, conjectured by Aldous and Steele 12m in the case of 
s tat ionary X and Euclidean f ,  that  (i) T is connected, i.e., T is a tree, and 
(ii) T has finite branches, i.e., if any one bond is removed from T, exactly 
one of the two resulting components  is infinite. 

We turn now to G a two-dimensional  lattice n_--square, triangular,  or 
hexagona l - -wi th  nearest-neighbor bonds and i.i.d, uniform values o f f .  Let 
G* denote the dual graph of G; each bond b in G has a unique dual bond 
b* which is its perpendicular  bisector. 

T h e o r e m  3.1. For  the nearest-neighbor graph G on each of the 
three two-dimensional  lattices 0_=7/2, 1-2, or H E, and { f (b) ,be~}  i.i.d. 
r andom variables uniform in [0, l ], the infinite f - M S T  T is a.s. a tree with 
finite branches which spans L 

A different method of constructing a stat ionary r andom tree, with 
finite branches, which spans ~2 was considered by Pemantle/2 '1 

Proof of Theorem 3. 1. The fact that  T spans 0_ and is a.s. acyclic 
with no finite components  was noted above. Let C be a connected compo-  
nent of  T and suppose C # 7". Let 

aC={b={y,=} e~: yeC,  zq~C} 
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and suppose bo = {Yo, Zo} ~3C Then bor T, so by (3.1) there exists a path 
Yo in G from Yo to zo consisting entirely of bonds b with f ( b ) < f ( b o ) .  Let 
hi= {y],zl} be the first bond in Yo which is in 0C--such a bond 
necessarily exists since Yo ~ C and Zo ~ C Similarly, there exists a path y~ in 
G from Yl to z~ consisting entirely of bonds b with f (b )  < f ( b t ) ,  and a first 
bond b2= {)'2, z2} in Yl which is in c3C; inductively, this process can be 
continued indefinitely. Let y be the path in C which follows Yo from Yo to 
y~, then Yt from y~ to Y2, and so on. Now the bonds b,. are distinct, since 
f(bo) > f ( b ~ ) >  .... so infinitely many of the vertices Yi are distinct, so y is 
an infinite path consisting entirely of bonds b with f ( b ) < f ( b o ) .  

Let Pc denote the critical probability for Bernoulli bond percolation on 
the lattice fl_. It follows from the above that f(bo)>~pc, and since bo is 
arbitrary, that f(b)>>, Pc for all b ~3C. Since all connected components of 
T are infinite, so are all components of the dual boundary {b*: bEOC}. 
Since C #  T, this dual boundary is nonempty. Thus {b*: f(b)>~ pc} per- 
colates. But for Bernoulli bond precolation on two-dimensional lattices, at 
the critical point there is a.s. no percolation of either bonds or dual 
bonds) ~2~ Thus the probability that there is a component C #  T is zero, i.e., 
T is connected a.s. 

The existence of a bond b such that removing b from T leaves two 
infinite components is equivalent to the existence of a doubly infinite path 
... ~ v 1--+ Vo--* v~---, ... of distinct sites in T. Since there is no percolation 
at Pc, with probability one not all bonds b in such a path can have 
f(b) <~ Pc. Thus it suffices to consider a bond b = {x, y} with f ( b ) >  Pc- Let 
T x and Ty be the two components of T remaining after b is removed, with 
x~Tx and Y~T~" Suppose b'={x' ,y '}  ~OTx, with x'~Tx; necessarily 
y '  e Ty. There exist paths 7.~ from x to x'  in T.~ and y.,, from y '  to y in T.,,. 
In any circuit the bond e with f(e) maximal is necessarily not in T, by 
(3.1); in the circuit consisting of y.~, b', yy, and b, the only bond not in T 
is b', so b' must maximize f i n  this circuit. In particular, f ib ' )>f(b)> Pc; 
this is valid for all b'~OT:,. Therefore {e*: e~OTx} c {e*: f(e)> pc}; as 
mentioned above, the latter set does not percolate. Since Tx and Ty are 
connected, so is {e*: e~3Tx}. Hence {e*: e~3Tx} is finite, so either T, or 
T,. is finite. �9 

Formally, the random field ~,(x)= d(x, T) is not homogeneous, as it 
is only invariant under shifts by an element of the lattice I1_. This can be 
remedied by translating the entire configuration by the random variable U 
as in Section 2; to avoid unnecessary technicalities we will not do so here. 

Corollary 3.2. Let Tdenote  the f -MST of Theorem 3.1, with 1]_ the 
square lattice, and define the potential @(x)=d(x,  T), x e R 2. For each 
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0 < h < 1/2, the level line Sj, is a.s. a single infinite line which enters every 
square of the lattice. Further, cov(~,(s+x),  r uniformly in s as 

Ix l  ~ ~ .  

Proof. The description of Sh is immediate from Theorem 3.1. 
For each nearest-neighbor pair {x, y} in the lattice, let A,(x, y ) =  
{(x + y)/2 + z: - ~ [ - n ,  n] 2} n Z 2, and define 

T,,= {b=  {x, y} eG: yr  Y<f(b)(x, A,(x, y))} 

Note T,, is the same as T except that one only considers paths connecting 
x to y inside a large box. Also, 

Ti ~ Tz ~ ... and f i  T,, = T 
n = l  

Fix x and s and let n = [Ixl/4] ] - 2  (the integer part.) Let Es be the set of 
12 bonds which have at least one endpoint in the closure of the square of 
form [ i , i + l ) •  j E Z )  containing s, with Es+x defined 
similarly. Then the events [b e T,,], b~E, ,  are independent of the events 
[b e T,,], b ~Es+x. Since at least one bond of Es and at least one bond of 
Es+x are in T,, it follows that d(s, 7",) is independent of d(s+x,  7",). As 
x ~ ,  so that also n--*oo, we have d( s ,T , ) -d ( s ,T ) - -*O and 
d(s+x,  T , ) - d ( s + x ,  T)--* O, both in L 2 uniformly in s. It follows that 
cov(~,(s+x),  ~b(s))--.0 uniformly in s. [] 
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